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Zeros of Partition Functions via
Correlation Inequalities

Francois Dunlop?
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We show analyticity of the pressure for some classical ferromagnetic sys-
tems in the region {|Im x| < Re u} of the external field. The proof, via
correlation inequalities, is simpler than existing proofs for the Lee and
Yang region {Re p # 0} and applies, without any approximation procedure,
to more general continuous spin variables, e.g., distributed as
exp(— xS — AS*" 4 3t_, 05,5%7), where og, is an arbitrary real num-
ber and the other parameters are positive. It also applies directly to plane
rotators in the region {|Im W] < |Re @} (Euclidean norms), but the proof
will be given in a subsequent article, together with new inequalities be-
tween truncated correlation functions.
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1. INTRODUCTION

Let Z((p);=1,..,5) be the partition function for a classical ferromagnetic
system, with two-body interactions, in a complex external field u; = x; + iy,
(at site j). We show that |Z|? has a positive expansion in the couplings J;;
and the combinations x; + y; of the external field. In particular the partition
function does not vanish when

'yf! < Xis V_]
The positive coefficients in the expansion are integrals of products of
(Sj -+ Sj’) i l‘(S, - SJ"), j = 1,..-,N (1)

where S; is the “spin” at site j and S, is an independent copy. The expres-
sions (1) define characters on the circle group, by means of polar coordinates.
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The method will therefore apply when the duplicated individual distribu-
tions are positive definite in terms of these variables (there is some freedom
in the choice of the radial variable).

Besides the Ising model, this includes the density

exp(—KSG” —ASt 4 > ozpszp) 2)
p=1

where o, is free (real) and the other parameters are positive (or zero, but
the measure should be finite).

The sign requirements give us a familiar potential with one or two
minima. More general situations should be allowed (e.g., two symmetric
wide and deep wells, absolute minima, and anything between them), but
we have only an implicit result: We allow the density

Jo Poexp(—rp® + Ap* — op?)dp
[o p"exp(—rp® + Ap* — 0p?)dp
(3)

Note that even if (3) contains Wick-ordered :S*:, it cannot be used for
a :¢®: field theory, because the diagonal part of the free measure gives a
very large o.

The other requirements in (2) also deserve some comments: Our method
is adapted to potentials that contain an arbitrary “mass term” ¢,,S2" and
for which the region of analyticity contains

exp(—«S% + AS* — 0S?) with 0 <3

{(m)il =47 < Argp; < dm, V3

The result (2) should then be compared with Newman’s theorem®:
For arbitrary ¢, and analyticity in

(sl =37 < Argpy < 37, Vj}
the only allowed polynomials are
AS4 -— 02S2

We therefore make two conjectures:

1. When « = 0 in (2), our region of analyticity can be enlarged, pos-
sibly to the whole Lee and Yang region.

2. Higher degree negative terms in (2) would reduce the region where
the pressure has a uniform lower bound.

Of course the size and shape of the region are only relevant in so far as
they help us to prove analyticity in a fixed neighborhood of the positive
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real axis. The uniform lower bound that we obtain is also a stronger result
than what we need. For example,

+ 2

(211')_1’2f exp[—1S% + (x + iy)S1dS| = exp(x? — y?) # 0, Vx,y

-

21 onlyif x2=y

We view our work as being in the line of Newman’s®: There the Lee—
Yang property was also related to inequalities (for derivatives of the pres-
sure). The improvement here is that all induction procedures have been
eliminated, so that we can deal directly with general continuous spins.

Section 2 deals with the Ising model, Section 3 with continuous real
spins, and Section 4 contains a heuristic discussion of the results and con-
jectures.

Note. Newman® has remarked that the inequality U,(, j, k,7) < 0 is
easy in our framework. Both (2) and (3) give new examples where it holds.
This result can be extended to bound higher order fruncated functions in
terms of two-point functions. We shall give the proof in a separate article
about plane rotators, for which such inequalities are new.

2. ISING SPINS

Theorem 1. Given positive numbers{J;; > 0:i = 1,..., N;j = 1,..., N},
let

N N
Z((p)j=1,.w) =27V z exp( z Jijoi05 + Z #f"j)
=1

o= %1 7=1
i=1,..,N i>f

(1)i-1,..n € CY

N N
(O 0y = Z((pyp127v z Oy " Ty CXP( Z Jijo0; + Z F"iaj)
f=1

oj= %1 ii=1
J=1,...N i>7

(9 € CNAZ ()| = 0};  ka,eos ki€ (L., N}

Then in the region
[sin(Im p,)] < Sh(Reyy), j=1,.,N

the following inequalities hold:

[Z((e))i] = Z(0) ©))
Re(<ak1"'Uk10k1+1>/<0k1"'0'k;>) =0 &)
Re(("lq"'Uk,ak,+10k,+2>/<0‘k1"‘0k,>) >0 (6)
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In particular,
Reo» 20, V) Q)

Re{oo,) 2 0, Vi, j ®)
Remark. The uniform lower bound (4) and the inequalities {(6) and (8)
are new (to the author). The inequalities (5) and (7) have been proven by
Newman @ in the whole Lee-Yang region.
Proof. We introduce an independent copy, denote it by primes, and
give a group structure to the new configuration space:
3(o; + o0;') = cos {nm, (o; — 0;') = sin nm, n;=0/1,2,3 (9

n; = 0, 1, 2, 3 have equal weights (invariant measure on Z,) if o; = +1 and
a; = +1 had equal weights (invariant measures on Z,).

We shall express duplicated expectations in terms of integrals of positive-
definite functions on (Z,)¥. The following formulas will be useful:

o0; + o0/ = 2 cos[(n; — n)ym/2]
o6 + ofa; = 2 cos[(m + ny)m/2]
o0, = cos(nm)
w05 + oy = 2x;cos tnm + 2iy;sindngm
= (x; + y)em™M? + (x; — y)e 2

Wherﬁ MKy = x,- -+ iyj and il:j = x,- - iy,-. Then

22 =4S exp{z S iy cosl(s — nym2]

N
+S G e S (xy — y,-)e—'"f‘w} (10)

Note that we have applied complex conjugation to the independent
“copy.” This can be compared with the (independent) work of Lebowitz,'®
where the two (real) “copies” differ by boundary condition terms.

Similarly,

2 Re <ak1"'ak:;0kl+1>
<Uk1"'ak1>
= <Gk1 e Gkgok; +10k1 b G;C¢> + <0;¢1 e 0;‘:10’;‘:1 +10k1 "'Gk;>
l<ak1 i Gk(>t2
1 Z cos(ty, ) -+ cos(ny,m) cos(y, , ,7/2)

ny=0,1,2,8
=1

X exp{Z Z.I,j cos{(n; — ny)m/2]

+ 2 (x5 + penE 4 D (x; — yein ;2}
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Also

Re <0k1 Ok 0% 41 %y +2>
<ak1 o Gk1>
I~ Z cos(ny,m) - cos(mem) cos{(ng, ., — my,,)m/2]

ny=0,1,2,3
i=1,.,N

X exp{2 ZJ,-, cosf(n; — n))m/2]
+ 3G+ 2 + Gy = e

where & means proportional with a positive coefficient.

The functions to integrate are clearly positive definite on (Z,)¥ when
|yl < x; for all j. The integrals are therefore positive, and the improved
lower bound (4) is obtained by expanding the exponential of the linear term
and keeping only the first term.

To obtain the larger domain in the theorem, we compute

2-1 Z exp(ipnm|2) exp(2x; cos In;m + 2iy; sin 3ngr)

ns=0,1,2,3
(Chxj+cosyj, p=0
Sh x; — sin y;, p=1

Ch x; — sin y;, p=2
Sh x; + sin y,, p=3

3. ONE-COMPONENT CONTINUOUS SPIN VARIABLES

Theorem 2. Given positive numbers {J;; > 0:i = 1,..., N;j = 1,..., N},
let {f; = 0:j = 1,..., N} be positive measurable functions on R such that

O ZQDsn) = [exp( > s+ )

J=11i>7
x ﬁ fAS)dS, < o,  ¥(u,), € RY
7=1
(i) f o cos(a — Am)f(p cos(e + $m))p dp

j=4L.,N; q > gy, integer, are positive-definite functions of «
on the circle. Here g, = 2 in general and =5 for even functions f;.
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Let Z be extended to a function on C¥ and let
N N
{Sky S = Z((f"j)j)ﬁlfskl"'sk; CXP{ Z JisSiS; + Z IL/S;}
¥ i=1:i>7 i=1
x | ] J/(S)dS;
=1

ki ki€l N} (uy);€ CN\{(V“J');!Z((P;‘);‘)I = 0}
Then in the region
Im p;| < Repy, j=1.,N
the following inequalities hold:
1Z({(e))] = Z(0) (an
Sy Sy o1 0

Re <Sk1”.Sktl> ?’ ) kl,---, kl+1 E{l,..., N} (12)

(Sor - SuSupsiSerad
Re 1 hisdlarel 5 () kisn k 1,.. N 13
Sy Sk 1 142 €4 } (13)

Proof. We introduce an independent copy, denoted by primes, and define
the polar coordinates for the sums and differences (usual variables in cor-
relation inequalities):

27YHS, + §/) = pjcos oy, 27YHS; — 8/) = p;sin
ds; dS; — p;dp; dey, j=1,.,N (14)
The strategy will be to use positive-definite functions of (e;); on the
N-fold product of the circle group:
JilSiS; + SV'S)) = Jypip; cos(ey — o), (Ji; 2 0)
= LJ,pipfei®e % + e~ tue%) (15)
S7 + 87 = pf
SiS) + Si'S; = pip; cos(e; + ;)
28,8/ = p cos 2
wiSs + B;S) = 2M2x,p; cos «; + i2Y%y,p, sin o
= p 272 (x; + yeti + (x; — ypet, (%1 ;2 0)
where p; = x, + iy; and g; = x; — iy;.

Also, but not positive definite as they stand,

S; = pjcos(e; — 4m), S/ = pycos(e; + 4m)
We then have
Z((2)DZ(9)5)

= fEXP[Z Jiipips cos(ay — o)
+ 3 p 275, + ) explie) + p27 1, — ) exp(—ic)|
X Hff(Pi cos(e; — 3m))fp; cos(ey + im))p; dp; do; (16)
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We expand the exponential in order to factorize the radial integrals.
The result is a power series in terms of the Ji; and (x; £ y;);, where any
coefficient is the integral over the group of explicit positive definite functions
times a product of radial integrals of the form (ii).

If (ii) would hold for all integers g, we could say that a product of
positive-definite functions is again positive definite, so that the integral over
the group is positive. The improved lower bound (11) and the inequalities
(12) and (13) then follow as for the Ising system. Hypothesis (i) legitimates
interchanges of limits and integrals.

But we have made a weaker hypothesis and should look at what happens
when some g is less than g,. For this purpose the angle integral should be
factorized, using (15), so that the complete integral at a given site in a given
term reads

[ e ps cosCas = 4m)fGos costay + dmdp dpydsy (1)

If g; = 1, p; must be zero. If ¢, is even, p, must be odd. The integral vanishes
for even f; because of the symmetry

o, —>a; + 7

If q; = 3, either p; = 0 and everything is positive, or p; = 2 and the integral
vanishes for even f; due to the symmetry

o, —> oy + wf2

When ¢q; > ¢,, hypothesis (ii) is equivalent to (17) being positive for
all p;, and we obtain a power series expansion with positive coefficients in
terms of the J;; and (x; + y)).

Theorem 3. Condition (ii) in Theorem 2 is satisfied by the density

exp(—— D AnSTE + 0y, 8+ > azps%)

3nzk>n n>p21
where
05, 20, n>p21; Oon € R; Apx 20, 3n2k>n
If n > 4, Ay, = 0 except for k = 2n, 3n.
Proof. n=1:

St 4+ 8§t = (5% + §'%)? — 2828'2 = p* — Lp* cos? 2u

S8 4+ 80 = (5% + §'2)° — 3825'%(S2 + S'%) = p® — $pScos? 2u
but

S8 + 5% = (S2 + §'9)* — 4528%(S? + §'%)? + 2548

= p® — p®cos? 2a + §p® cos? 2a
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The duplicated density can be written as
exp(—«S® — AS?* + oS exp(—«'® — AS't + 0S'2)
= exp(—xp® — Ap* + 0p?) expl(cos? 26)(3xp® + $Apf)]

which for any p is a positive-definite function of «, provided « and A are
positive (o arbitrary).

On the other hand, condition (ii) is violated in the presence of an eighth-
degree term (and n = 1). For example,

f exp(— Ap® + op®) exp[Ap®(cos? 2a — {cos? 2¢)]
x p®exp(8ic) dp doe < 0, o <0, Asmall
Proof. n > 1: oy, may have the “wrong” sign, so we choose
S 4§72 = 20 (18)

as our new radial variable.
Let us express p in terms of = and «:

Szn + Slzn = (Sz(n_l) + S:z(n-—l))(S2 + Slz) - S2S12(S2(n..2) + S/Z(n—z))

= .- (induction)

n

(=)7242(SSY(S2 + S
r=0,reven

N SSI r
2 S'2 n _ rlegn
(S + ) 7=2ven ( ) (Sz + S/Z)

The roots of the scale-invariant polynomial are obtained from

S2=1¢¥  S%P=e® 8§24 8" =2cosnf=0

so that
n—2 1]
» 2 + D 28§ 2
o 4§ = (S7 4 S [1— 2 (r ( )]
S2n 4 S22+ 8% r=l:[ven cos® | 5"
n—2
T = p2n rl;{ﬁﬂ (1 — cos? Q-;E&T cos? 2«) (19)

n-2 -1/2n
p=r H (1 — coszurcos2 2a)
r=0;even 2n

When 7 is fixed, p is a positive-definite function of «, as one can see by
a power series expansion. Therefore

€Xp 0252 exp 0,5"° = exp oyp?
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will be allowed in the individual distribution provided o, is positive. Simi-
larly

r—2 '
12p (S 1)”
2p — 20 2 2
S + 87 =p [ I (I cos 3 cos? 2o

$=0, even
-2
= 727 ﬁ 1 — cos? (s—+-~~1~)fcos2 2
s=0, even 2p
n-2 -pin
X H (1 -~ cos? (—rj——l-)-f cos? Za)
7=0, even 2”

«@ 2m
Ccos3™ 2
5% 4§ = 1% exp >
m= m

2(n-1) 2(p—1)
X {—& cos®™ (________r + D1 cos?m (——-—-—S ;pl)ﬂ}

2” r=0, even 2}1 2 §=0, even
(20)
We insert
cosmw = Z‘Zm(zm) + 22mtl Z ( ) SM
2n m e \m — m’ n
sty n, m =2kn
os’ﬁi’%l-)f =, m = 2k +
re0neven 0, otherwise
to obtain
S 4 §'%
_ o < €0s?" 2o
7P eXp mz -
o 2m =z , 2m
—2m m'in _ _\m'lp
<2l 5o () - 2O (m_m)}
multlple maultiple
of n of p
(21
The sum inside the brackets is

(e g) = ) * ()
-— + ——
m—p m— 2p m— 3p
( 2m ) ( 2m ) ( 2m )
- + - +
m—n m— 2n m — 3n
where the combinatoric coefficients decrease.
The first three terms give a positive contribution:

()= () - () 5o
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(the worst case is # = p + 1), The rest is a positive, alternating sum. There-
fore S22 + §'* is also a positive definite function of «, at fixed .

The two higher degree terms in the density are dealt with as for n = 1,
provided their power is a multiple of 2x:

S+ §7 = (§70 4§72 — 28

S + 8§ = (§2" + §'7) — 3§28 (§ + 577
They give a positive-definite factor:

exp(— 75 — Ar*") exp[2~2"(cos®" 20) 72" (37 + 21)]

When n = 2, 3 and k # 2n, 3n, the proof relies on a calculation which
we have not been able to extend to n = 4. We believe, however, that the
last restriction in the theorem is purely artificial.

Indeed, looking at (20), we see that all the coefficients in the exponential
are now negative (p > n). If they grow fast enough in magnitude with m,
the expansion of the exponential will have all negative coefficients, which is
what we need. But the first term has a factor of p, so the mth term should
be larger than of order p™, which should give an upper bound on p.

We also remark that if the monomials of even degree between 2n and
4n are negative definite (modulo a function of + alone), then the full range
of even integers (2n, 6n) is allowed in Theorem 3:

S4n+2q + S'4n+2q — (Szn + S'Z")(S2n+2q) _ SZnS'zﬂ(S2q + S'zu)’
O<g<n (22)

To complete the proof of the theorem, we check this assumption for
n = 2, 3, using (20):

2 2 -
S¢ 4+ 8° = (S* + S’*)alz(l - 32 2“)(1 - 22 2“) "
S 4 5 = (S5 + )
2 2 2 —
y [1 _ 4808 2a + 2(005 2oc)2](1 _ 5 ¢os 2a) 4/3

4 4 4
S0 4 87 = (8 + §7°)5

y [1 _5 cos? 2a + 5(0052 2a)2](1 _ 3 cos? Za)—sra

! ) ]

We expand the last factor and collect the two or three terms which
contribute to a given power of the cosine. Besides the desired result, we get
that monomials of degree larger than 3n (n = 2, 3) are not negative definite
for fixed .

Lemma 1. Condition (ii) in Theorem 2 is satisfied by the density
exp(—«S® + AS* — 05?), kK, A=0
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provided
[s 8% exp(—«S® + AS* — 05?) ds
J: ST exp(—«S® + AS* — oS?)ds

@3

Remark. Tt is precisely for this application that we introduced the
restriction ¢ > g, in Theorem 2. For g, = 1, (23) would be replaced by the
smaller interval

_ Jo Sexp(=xS® + AS* — 057 ds

j S%exp(—«S® + AS* — 0S?) ds

Proof. The condition refers to

[ exp(=rp® + 26 = 0p) expl(cos® 2(3es® — 316" dp
g=35

We expand the second factor and let

A(p,q) = [ (6P — AN exp(—rp® + Wp* — p7) dp
We should prove
Ap,g) 20, Vp,Vg =5

Only p odd is a problem. We first study the dependence on g by separating
the function to integrate into its positive and negative parts: The corre-
sponding integrals satisfy

Adp,q) 2 QN3) A (p,g — 1), A_(p,q) < (2N3)"P4 (p,qg— 1)
so that
Alp,q) = A (p, ) — A(p,q9) = QA3)"2A(p,q — 1)
But then

A(p, q) = 36k24(p — 2,9 + 12) — 48Mcd(p — 2,9 + 10)
+ 16A%4(p — 2,9+ 8), p=z=3
2z 16A%A(p — 2,9 + 8)

The result now follows by induction from
A(1,9) = [ (6xp® — Mp)lexp(—xs® + 49" exp(—op?) dp

f(ﬁp — 20p7) exp(—xp® + Ap* — op®)dp = 0 by hypothesis.
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Lemma 2. Any density satisfying condition (ii) in Theorem 2 will keep
this property after multiplication by a power series > 7= q @,57? satisfying
(1) a,° 2 2054505
(iD) Api1lp Z Qpsolp-1 + Qpyilp.g

Remark. 1t follows that powers of the power series are also allowed.
One can then use Newman’s approximation method™ to recover Theorem
3 at least forn = 1:

fexp(—n*2u B2 + n= 0k1BS2 4 Jn =238 —— exp(—§xS°)

The moral of Lemma 2 is that we should consider densities modulo
entire functions of sufficiently slow growth (slower than just order zero).

Sketch of the proof:

(Z a,,S”}(Z aqS"‘)

== Z Cun(S + S)TO(SSn-omwyz-m(§2 | SlQ)m

n,m=0n-2mz0

where

0, n even

o) = {1, n odd
n—-on)l/2-m
Cnm — 2 (_)[T+d(ﬂ)]/2A$m+2r+U(ﬂ)a[n+d(n)]/2+m+ra[n"a(n)]/2_m_r
— — 1[py

ax = (7 T O ow + 1= oo - o)
AP =1

The hypothesis guarantees
Cum = 0, Vr, m

The result then follows from the fact that positive-definite functions form a
multiplicative cone.

4. A HEURISTIC DISCUSSION

The models under consideration undergo a phase transition at strong
couplings and zero external field, in suitable geometric situations, irrespec-
tive of the other parameters.”® For the densities

exp(— AS*" 4 o0S?), ceR
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two pure phases are expected, corresponding to

B (o + B\ien-2
& = zax ()

B is an increasing function of the J; in the interaction term

exp(z JijSiSj)

It goes to infinity when all the J;; go to infinity.

The idea of the Lee~Yang theorem is that an arbitrarily small external
field is enough to pick one of the two phases, as indicated by the minimum
of the potential:

4pAS* Tl — 268 — p =0
This is clear enough when ¢ > 0:
Sain = (o/202)/14%°2 + 0()
but not when ¢ < 0:
Smn = O(p)

which is very far from S = {(S§> .
Asforo =0,

Smin ~ (“)1/(4n—1)

which is much better for small p and large n.

Of course all the S,,;, are smaller than {S> ., but if we have gone some
way (o = 0) at the minimum of the potential, the conditions on a possible
imaginary part of p will be less stringent, and the exp(>, J;,S;:S;) will push §
for the rest of the way to its true expectation.

Needless to say, we would be very happy to replace this very tentative
argument by a better one. It was an attempt at explaining why o should be
positive or zero in our Theorem 3. Because {(S), increases with n for suit-
able A, it also suggests that the region for analyticity, for ¢ arbitrary negative
and A arbitrary positive, should shrink as » increases, as it does from degree
4 to degree 6.
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