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We show analyticity of the pressure for some classical ferromagnetic sys- 
tems in the region {Jim t~l < Re tz} of the external field. The proof, via 
correlation inequalities, is simpler than existing proofs for the Lee and 
Yang region {Re/~ r 0} and applies, without any approximation procedure, 
to more general continuous spin variables, e.g., distributed as 
exp(-~S ~" - ,~S 4n + ~p=l" ~2pS2P), where ~2~ is an arbitrary real num- 
ber and the other parameters are positive. It also applies directly to plane 
rotators in the region {lira I~[ ~< IRe I~l} (Euclidean norms), but the proof 
will be given in a subsequent article, together with new inequalities be- 
tween truncated correlation functions. 

KEY WOR DS: I_ee-Yang zeros ; correlation inequalities; ferromagnetic. 

1. I N T R O D U C T I O N  

Let Z(Oz:):=l ..... N) be the part i t ion function for  a classical ferromagnetic 
system, with two-body interactions, in a complex external field t~: = xj  + iyj 
(at site j ) .  We show that IZ] 2 has a positive expansion in the couplings J~j 
and the combinat ions  x s + yj o f  the external field. In  particular the part i t ion 
function does not  vanish when 

iYA ~< xj, Vy 

The positive coefficients in the expansion are integrals o f  products  o f  

(Sj  + S / )  +_ i ( S y -  S / ) ,  j =  1 .... , N  (1) 

where Sj is the " s p i n "  at site j and S / i s  an independent  copy. The expres- 
sions (1) define characters on the circle group, by means o f  polar  coordinates.  
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The method will therefore apply when the duplicated individual distribu- 
tions are positive definite in terms of these variables (there is some freedom 
in the choice of the radial variable). 

Besides the Ising model, this includes the density 

e x p ( - - K S 6 ~ - - A S ~ " +  ~ a29S 2p) (2) 
9 = 1  

where a2, is free (real) and the other parameters are positive (or zero, but 
the measure should be finite). 

The sign requirements give us a familiar potential with one or two 
minima. More general situations should be allowed (e.g., two symmetric 
wide and deep wells, absolute minima, and anything between them), but 
we have only an implicit result: We allow the density 

f~  ~ e x p ( -  Kp 6 + kp 4 - ap2) dp 
exp(--KS 6 + AS 4 - eS 2) with ~ ~< 3 0vff pTexp(-~cP6 + t04 ~P2)dP 

(3) 

Note that even if (3) contains Wick-ordered :S 6:, it cannot be used for 
a :~06: field theory, because the diagonal part of the free measure gives a 
very large a. 

The other requirements in (2) also deserve some comments: Our method 
is adapted to potentials that contain an arbitrary "mass term" a2,S 2~ and 
for which the region of analyticity contains 

{(tzs)sl-br < Arg tzs < �88 Vs} 

The result (2) should then be compared with Newman's theorem(l~: 
For arbitrary or2 and analyticity in 

{(/xj)j]-br < Arg/~j < ~rr, Vj} 

the only allowed polynomials are 

k S  ~ - ~ 2 S 2  

We therefore make two conjectures: 
1. When K = 0 in (2), our region of analyticity can be enlarged, pos- 

sibly to the whole Lee and Yang region. 
2. Higher degree negative terms in (2) would reduce the region where 

the pressure has a uniform lower bound. 
Of course the size and shape of the region are only relevant in so far as 

they help us to prove analyticity in a fixed neighborhood of the positive 
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real axis. The uniform lower bound that we obtain is also a stronger result 
than what we need. For  example, 

1 2 
(2~r) -*/2 exp [ - � 89  2 + (x + iy)S] dS = exp(x 2 _ y2) r 0, Vx, y 

rio 

>~ 1 only if x ~>y 

We view our work as being in the line of Newman's(m: There the Lee-  
Yang property was also related to inequalities (for derivatives of the pres- 
sure). The improvement here is that all induction procedures have been 
eliminated, so that we can deal directly with general continuous spins. 

Section 2 deals with the Ising model, Section 3 with continuous real 
spins, and Section 4 contains a heuristic discussion of the results and con- 
jectures. 

Note. Newman ~a) has remarked that the inequality U4(i,j, k, l) <<. 0 is 
easy in our framework. Both (2) and (3) give new examples where it holds. 
This result can be extended to bound higher order truncated functions in 
terms of two-point functions. We shall give the proof  in a separate article 
about plane rotators, for which such inequalities are new. 

2. IS ING S P I N S  

Theorem 1. Given positive numbers {J~j 1> 0: i = 1 .... , N ; j  = 1 ..... N}, 
let 

Z((Izj)j=I ..... N) = 2 -N ~ exp J=j~,aj + /zjoj 
al= :~i \I,]=1 ]=1 

/" = 1 , . . . , N  f > ]  

( t ' , ) s : l  ..... N e C N 

) (o '< . . .~ , )  --- Z((~j)j)-12 -N ~ ~k~'"ek, exp + ~j~j 
aj= ~- I f ]=1 

] =  1 , . . . , N  ~>J 

(~j ) ;  ~ c ~ / { ( ~ j ) j l z ( ( ~ ) h l  = 0};  k l  . . . . .  k, e { 1  .. . . .  N }  

Then in the region 

Isin( Im/~J)l ~< Sh(Re/zj), j = 1 ..... N 

the following inequalities hold: 

IZ((/z,)),l t> Z(0)  (4) 

Re((crk, "'or k,%, + 1)/(cry,"" ak,)) t> 0 (5) 

Re((ak,... ok,~k, + zak, + 2) / (~ , . . .  ak,>) 1> 0 (6) 
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In particular, 
Re(%) 1> O, Vj (7) 

Re(a~a s) >1 0, Vi,j (8) 

Remark. The uniform lower bound (4) and the inequalities (6) and (8) 
are new (to the author). The inequalities (5) and (7) have been proven by 
Newman ~2~ in the whole Lee-Yang region. 

Proof. We introduce an independent copy, denote it by primes, and 
give a group structure to the new configuration space: 

�89 + %') = cos �89 �89 s - as' ) = sin �89 nj = 0, 1, 2, 3 (9) 

n s = 0, 1, 2, 3 have equal weights (invariant measure on Z4) if % = _+ 1 and 
a s' = _+ 1 had equal weights (invariant measures on Z2). 

We shall express duplicated expectations in terms of integrals of positive- 
definite functions on (Z4) N. The following formulas will be useful: 

! t a~s + cr~ aj = 2 cos[(ni - ns)rr/2 ] 
t J 

%%' = cos(nj~r) 

t~j~s + ~-j%' = 2xs cos �89 + 2iy s sin �89 
= (x s + ys)el'~f f2 + (xs - yj)e-%,~/2 

where t~ s = x s + iyj and #j = xs - iyj. Then 

Z((m)s)Z((t~)s) = 4 -N ~ exp '2  ~ J~j cos[(n~ - ns)~.'/2] 
hi= 0 , 1 , 2 , 3  

J=I,,, . ,N 

+ ~ (xj + ys)e% ='~ + ~ (x s - ys)e-% ~'z} (10) 

Note that we have applied complex conjugation to the independent 
"copy."  This can be compared with the (independent) work of Lebowitz, C~) 
where the two (real) "copies" differ by boundary condition terms. 

Similarly, 

2 Re (a~l"'" ~,~ + 1) 

~, ~ cos(nkl~')-" cos(ne,lr) cos(n�89 + xTr/2) 
~,t= 0 , 1 , 2 , 3  

~ = I , . . . , N  

x exp(2 ~ ~j cos[(n, -- nj)~r/2] 

+ ~ (x, + y,-)e% ~'z + ~ (x, -- ys)e-'nf'~ 1 
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Also 

Re <a~ ... akyk, +~% +~> 

~ cos(nkl=).., cos(nky) cos[(nk, +x -- nk, + 2)~r/21 
"aj = 0 , 1 , 2 , 8  
]=I,...,N 

x exp (2  ~ Jij cos[(ni - n,)~r/2] 

+ ~, (x, + y,)e% ~I2 + (x, - yj)e-% ~jz} 

where ~ means propor t ional  with a positive coefficient. 
The  functions to integrate are clearly positive definite on (Z~) N when 

lyJl < xj for  all j .  The  integrals are therefore positive, and the improved 
lower bound (4) is obtained by expanding the exponential  of  the linear term 
and keeping only the first term. 

To  obtain the larger domain  in the theorem, we compute  

2-1 ~ exp(ipn,zr/2) exp(2xj cos �89 + 2iy~ sin �89 
nt=0,1,2,3 

r C h x j  + cosy j ,  p = 0 

p = l  

p = 2  

p = 3  

/ 
= } Sh x,  - sin y , ,  

Ch x,  - sin y , ,  

I.Sh x,  + sin y , ,  

3. O N E - C O M P O N E N T  C O N T I N U O U S  SP IN  V A R I A B L E S  

Theorem 2. Given positive numbers  {J~, > /0 :  i = 1,..., N;j  = 1 .... , N}, 
let {fi 1> 0 : j  = 1 ..... N} be positive measurable functions on E such that  

(i) Z((/zj)j=I ..... N) = 

N 

• I - [ f , (s3  as, < ~ ,  v(~;);  ~ ~" 
1 = 1  

Io (ii) ~ (P  cos(a - 4xrr))fj.(p cos(a + - b r ) ) / d o  

j = 1 ..... N;  q /> qo, integer, are positive-definite functions of  a 
on the circle. Here qo = 2 in general and = 5 for  even func t ions f j .  
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Let Z be extended to a function on C n and let 

<Skl'"Sk~> = Z((/xj)j) -1 Sk~'"S~, exp J~jS~Sj + tzjSj 
".i , j  = 1:  i > Y  j = 

N 

x 1 ~  J,(Ss)dSJ 
j = l  

kl ..... k, ~ {1,..., N}; (/~j)j ~ CN\{(~j)jtZ((lzy)j)t = 0} 

Then in the region 

Jim/~j[ ~< Re ~j, j = 1,..., N 

the following inequalities hold: 

tz((m)j)t >i z(0)  (11) 

Re (S~I.. .S~S~+~> >I O, ki, . . . ,  k,+~ ~ {1 ..... N} (12) 
<&~... sk,> 

Re <Skl"''Sk'Sk'+lSk'+2> >1 O, k~,... ,k,+2z{1 ..... N} (13) 
< S~1"'" Sk,> 

Proof. We introduce an independent copy, denoted by primes, and define 
the polar coordinates for the sums and differences (usual variables in cor- 
relation inequalities): 

2-  ~I2(Sj + S/)  = Pi cos aj, 2-1t2(S s -- S;') = p; sin ~;, 

dSj dS/ - -+ Pt dpj daj, j = 1 .... , N (14) 

The strategy will be to use positive-definite functions of (%)j on the 
N-fold product of the circle group: 

jfj(SiSy + S i 'S / )  = Ji~PtPy cos(at - aj), (Jir 0) 
= �89 pipj(e~,e-% + e-*~,e%) (15) 

S? + S~? = pj2 

S i S /  "4- S~'Sy = p~p~ cos(a/-k %) 

2SsS / = pjz cos 2ar 

t~sS~ + lz~S~' = 2~9"xypj cos ar + i2~y~py sin a~ 
= pj2-~r + yr ~, + (x~ - yr  (x~ ++. y~ >1 O) 

where t~  = xr + / y ;  and ~r = x~ - / y ~ ,  
Also, but not positive definite as they stand, 

s;  = pj cos (~  - �88 S / =  ~ cos(%- + k~) 
We then have 

z((m)3z((~33 

+ ~ ~ 2 -  ~/Z(x~ + y~.) exp(i~) + p~2- x~(xy - y~) exp ( -  i%)1 

• ~ f ~ ( p j  cos(% - x~.))f~(p~ cos(% + ~r))py dp~ d~  (16) 
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We expand the exponential in order to factorize the radial integrals. 
The result is a power series in terms of the J~j and (xj + yj)j, where any 
coefficient is the integral over the group of explicit positive definite functions 
times a product of radial integrals of the form (ii). 

If  (ii) would hold for all integers q, we could say that a product of 
positive-definite functions is again positive definite, so that the integral over 
the group is positive. The improved lower bound (11) and the inequalities 
(12) and (13) then follow as for the Ising system. Hypothesis (i) legitimates 
interchanges of limits and integrals. 

But we have made a weaker hypothesis and should look at what happens 
when some q is less than q0. For this purpose the angle integral should be 
factorized, using (15), so that the complete integral at a given site in a given 
term reads 

fe~PJ~Jp~,-l f j(pj  cos(% -- �88 cos(%. �88 dpj d% (17) + 

If  q~. = 1, pj must be zero. If  qj is even, pj must be odd. The integral vanishes 
for even f~. because of the symmetry 

~j---> ~j  -{- 7r 

If  qj = 3, either pj = 0 and everything is positive, or pj = 2 and the integral 
vanishes for evenf j  due to the symmetry 

aj --> %. + rr/2 

When qj >/qo, hypothesis (ii) is equivalent to (17) being positive for 
all py, and we obtain a power series expansion with positive coefficients in 
terms of the J~j and (xj + yj). 

Theorem 3. Condition (ii) in Theorem 2 is satisfied by the density 

exp - Z a2kS2k + ~2"$2" + Z cr2v ] 

where 

r /> 0, n > p  1> 1; r  

I f  n > 4, '~2~ = 0 except for k = 2n, 3n. 

P r o o f .  n = 1: 

,~2k 1> 0, 3n /> k > n 

but 

S 4 + S ,4  = ( S  2 + S,~)2 _ 2 S 2 S , 2  = p~ _ �89 cos 2 2a 

S 6 + S ,6  = ( S  2 + S,2)3 _ 3 S 2 S , 2 ( S  2 + S ,2)  = p6 _ �88 cos 2 2= 

S 8 + S '8 = ( S  2 + S '2 )  4 _ 4 S 2 S ' 2 ( $ 2  + S '~ )  2 + 2 S 4 S  '4 

= p8 _ p8 cos 2 2a + ~pa cos 4 2a 



222 Fran(;ois Dunlop 

The dupl ica ted  densi ty  can be wri t ten as 

e x p ( - K S  6 - AS s + ~S 2) e x p ( - K  '6 _ AS,4 + ~S '2) 

= e x p ( - K p  6 -- hp 4 + crp 2) exp[(cos 2 2a)(�88 6 + �89 

which for  any  p is a posi t ive-defini te  funct ion  o f  % prov ided  x and h are 
posi t ive  (~ arb i t ra ry) .  

On the o ther  hand ,  cond i t ion  (ii) is v io la ted  in the presence o f  an eighth- 
degree t e rm (and n = 1). F o r  example ,  

f e x p ( - h p  8 + ~pz) exp[ApS(cos 2 _ ~cos 4 2a)] 2a 

x p5 exp(8ia)  dp da < O, cr < O, A small  

Proof .  n > 1 : az~ may  have the " w r o n g "  sign, so we choose  

S 2'~ + S '2" = T 2'~ (18) 

as our  new radia l  var iable .  

Let  us express p in terms o f  r and  ~: 

S 2" + S '~" = ($2(.-1) + S'~{"-~))(S 2 + S '~) _ $2S,~($2( . -2)  + S '~{"-~,) 

. . . .  ( induct ion)  

= ~ (-)rl2A2rn(SS')r(s2 + s 'z)  n-r 
r = O ,  ~'even 

~-- ( s2  + S,2) n ~,, (--)rl2A2rn S_S i ]r 
r = O ; e v e n  S 2 -]- St2/ 

The roo t s  o f  the scale- invar iant  po lynomia l  are ob ta ined  f rom 

S 2 = e t% S t2 ~-- e - t ~  

so tha t  

S 2" + S '2" = (S  2 + S'2)" 
n - 2  

I7 
r = O ; e v e n  

S z" + S ' 2 " =  2 c o s n 0 = 0  

(r + 1)rr[ 2 S S '  '~2] 
COS 2 

r2~ = p2~ ~ 1 - cos 2 cos 2 2~ (19) 
r = o; even 2n 

~-2 ( (r+ 1)~r )-1/2~ 
P = ~ I--[  1 - cos 2 cos 2 2a 

r = 0;  even 2n 

W h e n  z is fixed, p is a posi t ive-defini te  funct ion o f  a, as one can see by  
a power  series expansion.  Therefore  

exp a2S 2 exp eraS '2 = exp cr2p2 
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will be allowed in the individual distribution provided cr~ is positive. Simi- 
larly 

$2 p + S,~ (s + = p2p ~ 1 - cos 2 t)rr cos~ 2c~ 
8 = o ,  e v e n  2p 

= ~ ~  I-- [  1 - c o s  ~ ( s  + 1 )~  ~= o. ~v~n 2p cos z 2c~ 

S 2p + S '2~ 

x 1-I 1 - cos 2 cos 2 2c, 
r = o ,  e v e n  2n 

= ~.2p exp 
C O S  2 m  2c~ 

m=l m 

I ~  2(p- 1) 2(~-t~ (r + 1)rr 1 
x ~ cos 2~ 

r = O, e v e n  2n 2 S = O. e v e n  

We insert 

cos2,, (r + 1)~r 
2n 

to obtain 

S 2p + S '2~ 

(s + 1)~r\ cos 2m ~p- J 

(20) 

= 2-2~ + 2 -2m+1 m'=l m -  m' cos 
n 

2~-~) m'(r  + 1)~r fn,  m' = 2kn 
cos = - n ,  m' = ( 2 k +  1)n 

r=O, even n 

0, otherwise 

= ~.2p exp ~ c~ 2c* 
m = ~  m 

Imp__1 ( ) ( 2m ,~ 
- 2 m  - -  re'In x 2  :p 

m - m /  
/ r a u l t i p l e  
k of  tt 

ra"=l t m  -- m" 
m u l t i p l e  

o f  P 

(20 
The sum inside the brackets is 

_ ( m _ 2 p )  + 2m ~m ( m - ~ )  

- ( g m ~ )  + ( m % ) -  ( ~ o )  +""  

where the combinatoric coefficients decrease. 
The first three terms give a positive contribution: 
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(the worst case is n = p + 1). The rest is a positive, alternating sum. There- 
fore S 2~ + S '2p is also a positive definite function of ~, at fixed r. 

The two higher degree terms in the density are dealt with as for n = 1, 
provided their power is a multiple of 2n: 

S 4~ + S '~" = ( S  2n + S'2~) 2 _ 2 S 2 ~ S  ,~" 

s 6. + s ,o. = ( s ~  + s,~")3 _ 3 s ~ , , s , 2 . ( s~ .  + s ,~") 

They give a positive-definite factor: 

exp(-~.6~ _ At4,) exp[2-2,(cos2~ 2~)~2,(3Kr2, + 2A)] 

When n = 2, 3 and k r 2n, 3n, the proof relies on a calculation which 
we have not been able to extend to n /> 4. We believe, however, that the 
last restriction in the theorem is purely artificial. 

Indeed, looking at (20), we see that all the coefficients in the exponential 
are now negative (p > n). I f  they grow fast enough in magnitude with m,  

the expansion of the exponential will have all negative coefficients, which is 
what we need. But the first term has a factor of p, so the mth term should 
be larger than of order 1 )m, which should give an upper bound on p. 

We also remark that if the monomials of even degree between 2n and 
4n are negative definite (modulo a function of r alone), then the full range 
of even integers (2n, 6n) is allowed in Theorem 3: 

S ""+~q + S ' " + ~  = ( S  ~ + S '~~  ~"+~'~) - S ~ " S ' ~ " ( S  ~ + S ' %  

0 < q < n (22) 

To complete the proof of the theorem, we check this assumption for 
n = 2, 3, using (20): 

S 6 + S ' ~  S " ) a / 2 ( 1 -  3 c ~  2-------~)(1_ 2 c~ 2_..____~) -a'2 

S 8 + S'" = (S 6 + S'~) 4/a 

x [1 - 4 ~c~ 2 ~ +  2 (co~  2___.___~) 2] ( 1 - 3 ~ c ~  2a)-4/3 

S 1~ + S '1~ = (S 6 + S'6) 5/3 

, +5( t21(13 
We expand the last factor and collect the two or three terms which 

contribute to a given power of the cosine. Besides the desired result, we get 
that monomials of degree larger than 3n (n = 2, 3) are not negative definite 
for fixed r. 

l_emma 1. Condition (ii) in Theorem 2 is satisfied by the density 

exp(-KS 6 + ,~S 4 - orS2), K, ,~ /> 0 
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provided 

cr ~< 3 fo  Ss exp( -~S  8 + AS ~ - aS 2) ds (23) 

.fo $7 exp ( -  •$6 + AS~ ~S 2) ds 

Remark. It is precisely for this application that we introduced the 
restriction q >/q0 in Theorem 2. For qo = 1, (23) would be replaced by the 
smaller interval 

~r ~< fo  S exp(-KS 6 + AS 4 - c r S  ~) ds 

fo  Sa exp( -  KS ~ + AS ~ -~ ~ as 

Proof. The condition refers to 

f exp(--Kp ap 2) 2a)(z]e:p 6 - -}Ap~)Ip q dp + Ap 4 exp[(cos 2 

q>~5 

We expand the second factor and let 

f p~(6Kp 6 - 4Ap4) p e x p ( -  ~p~ + Ap~ - c~p 2) dp A(p, q) 

We should prove 
A(p,q)  >! O, Vp, Vq >1 5 

Only p odd is a problem. We first study the dependence on q by separating 
the function to integrate into its positive and negative parts: The corre- 
sponding integrals satisfy 

A+(p, q) >1 (2A/3K)tt2A +(p, q - 1), A_(p, q) ~< (2~/3tr)t12A_(p, q -- I) 

so that 

A(p, q) = A+(p, q) - A_(p, q) >t (2A/3K)I/2A(p, q - 1) 

But then 

A(p, q) = 36~PA(p - 2, q + 12) - 48h~cA(p - 2, q + 10) 

+ 16h2A(p - 2, q + 8), p >I 3 

f> 16A2A(p - 2, q + 8) 

The result now follows by induction from 

A(1, 5) = f (6~r 5 - 4Apa)[exp( - Kp 6 + AO4)]p 6 exp(-crp 2) do 

= f (6p  ~ - 2ap 7) exp(--Kp ~ + Ap 4 -- ~rp2 )dp >1 0 by hypothesis. 
d 
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L e m m a  2. Any density satisfying condition (ii) in Theorem 2 will keep 
this property after multiplication by a power series ~- -o  a p S  p satisfying 

(i) ap 2 >>. 2a~ + ~a~_ 2 

(ii) a v + l a p  >i a p + 2 a p _ l  + a ~ + 3 a p - 2  

R e m a r k .  It follows that powers of the power series are also allowed. 
One can then use Newman's approximation method (1~ to recover Theorem 
3 at least for n = t :  

[exp(-  n2tSK118S2](1 + n-  113K1/3S2 + �89 - 213K213S4)~ ~ ~ ~ exp(-- ~KS 6) 

The moral of Lemma 2 is that we should consider densities modulo 
entire functions of sufficiently slow growth (slower than just order zero). 

S k e t c h  o f  t he  p r o o f :  

a,s')(2: oos' ) 
= ~ C~.,(S + S')~">(SS')t"-~(">~:~-m(S2 + S'~) " 

~ m  = 0 ; n - -  2n l  ; :  0 

where 

f0 ,  n even 
a ( n )  = 1, n odd 

I n -  a(n)]f2 - m 
C n  m ~ [r + a(n)]/2 2m + 2r + a(n) = ( - )  A, at, + a(n)]12 + m + rain - a(nl]/2 - m - r 

~'=0= 

A o ~  1 

The hypothesis guarantees 

C,m 1> 0, Vn, m 

The result then follows from the fact that positive-definite functions form a 
multiplicative cone. 

4. A H E U R I S T I C  D I S C U S S I O N  

The models under consideration undergo a phase transition at strong 
couplings and zero external field, in suitable geometric situations, irrespec- 
tive of the other parameters. (5~ For the densities 

exp( -  ) iS  4" + a S 2 ) ,  a ~ R 
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two pure phases are expected, corresponding to 

/3 is an increasing function of the J~s in the interaction term 

e x p ( ~  J , , S , S , )  

I t  goes to infinity when all the J~s go to infinity. 
The idea of the Lee-Yang theorem is that an arbitrarily small external 

field is enough to pick one of the two phases, as indicated by the minimum 
of the potential: 

4n)~S ~n-1  - 2 ~ S  - t~ = 0 

This is clear enough when a > 0: 

Stain = (cr/2nh) 1/(~"-z) + O(/z) 

but not when a < 0: 

Smlo = O(t~) 

which is very far f rom S = ( S ) + .  
As for a = 0, 

Sml/1 ~ (//,)1/(4.-1) 

which is much better for small t~ and large n. 
Of  course all the Smln are smaller than ( S )  +, but if we have gone some 

way (~ i> 0) at the minimum of the potential, the conditions on a possible 
imaginary part  of  tz will be less stringent, and the exp(~: J~yS~Sj) will push S 
for the rest of  the way to its true expectation. 

Needless to say, we would be very happy to replace this very tentative 
argument by a better one. I t  was an attempt at explaining why cr should be 
positive or zero in our Theorem 3. Because (S )+  increases with n for suit- 
able ,~, it also suggests that the region for analyticity, for a arbitrary negative 
and ,~ arbitrary positive, should shrink as n increases, as it does from degree 
4 to degree 6. 
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